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ABSTRACT 

At times there may be the need to determine the total quantity of solar energy (watts per 

square meter per day, W-day/m2), that is available during a day’s worth of sunshine (solar 

insolation), based on instantaneous solar irradiance (watts per square meter, W/m2) 

measurements.   

Four ‘area under the curve’ methods are discussed for determining insolation from measured 

irradiance data: 

• Graphical sum of rectangles; 

• Graphical sum of trapezoidals; 

• Graphical sum of parabolic bounded areas (Simpson’s Rule); and 

• Integration (Calculus) of trendline equations. 

Each method can provide progressively more accurate results. 

This paper summarizes the expectation that the Integration (Calculus) of trendline equation is 

the most accurate (provided the trendline correlation factor is close to unity (1)) and the 

quickest of the methods to use.  The Integration formula is presented in a user friendly ‘cook 

book’ procedure. 

A detail discussion of each method is presented in Appendix A, complemented with example 

calculations of how to determine the four methods. 
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INTRODUCTION 

At times there may be the need to determine the total quantity of solar energy (watts per 

square meter per day, W-day/m2), that is available during a day’s worth of sunshine (solar 

insolation), based on instantaneous solar irradiance (watts per square meter, W/m2) 

measurements recorded over time.   

Solar irradiance measurements (except for extremes at the north and south pole latitudes), 

generally starting right before sunrise and ending right after sunset, is essentially zero (the 

earth’s shadow blocks the sun’s rays), and peaks around noontime.  Terrestrial solar 

irradiance, before striking the earth’s surface, passes through varying thickness of atmosphere 

(the air mass or AM which equals 1 at noon) depending on the time day.  Wherein low angle 

sunrise and sunset sunshine, passes through many air mass thicknesses, part of the  

irradiance is absorbed  by the atmosphere (by water, CO2, ozone absorption and scattering, 

for example), with the most intense terrestrial solar irradiance at noon time, when the sun is 

overhead and has the thinnest air mass layer to travel through.  In addition, irradiance intensity 

also varies depending on how far the earth is from the sun (aphelion – furthest from the sun, 

and perihelion, closest). 

Instantaneous terrestrial solar irradiance 

measurements (recorded at an earth’s surface test 

location) when plotted on a graph against the time 

interval of measurement, generally will show a 

characteristic parabolic shaped curve (see figure to 

the right).  The area under that curve is equivalent to 

total energy measured in watts per square meter per 

unit of time, W/m2 x time (day), which equates to the 

total quantity of energy (insolation) accumulated 

over the day at the measurement location.  The greater the number  (shorter) time interval 

measurements taken over a test period will result in a more accurate curve.   There are some 

measurement tools that take data measurements continuously.  In addition some data logger 

measurement tools also provide for integrators that automatically assess the area under the 

curve. 

There are different techniques in the absence of technology, for determining the insolation or 

area under the curve.  Three manual calculated techniques  include graphical procedures 

(rectangle, trapezoidal, Simpson Rule) and a fourth, an analytical technique (integration of a 

curve model, a little bit of calculus – but not to worry, this paper simplifies the process of 

calculation if you haven’t used calculus in a while).  There are various software programmes 

that can also assist with the area determination.  This paper illustrates how the techniques 

work and a comparison of their respective results, and a suggestion that  in the absence of 

more rigorous tools, the analytical Calculus technique is a quick and convenient method to 

use. 

Appendix A is a discussion of the derivation of each area under the curve determination 

technique, an in-depth understanding of which, is not essential for employing the area 

calculations described in this paper. 
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COLLECTING AND PLOTTING THE DATA 

Assume a solar developer is in need of understanding the quantity of solar energy insolation 

(W-day/m2) at a particular location, and on a particular day.  While only an example, this 

discussion illustrates the energy determination technique principles that are applicable on a 

larger scale.    

Assume the solar developer uses a pyranometer to measure solar irradiance data, and   

manually records the data every 15 minutes, from sunrise (7:00 a.m.) to sunset (7:00 p.m.).  

The data is then graphed (irradiance values on the y axis, and time values on the axis).  

Example recorded irradiance data is reported in Appendix B Data Table and in Appendix C, 

which are graphs of the data that illustrate the irradiance  plotted against time (note the 

characteristic parabolic curve profile). 

Using Microsoft™ Excel™ spreadsheet, the parabolic looking curve can be approximated by 

determining a trendline equation.  Trendlines determined for Appendix C graphs are illustrated 

in Appendix D. The trendline equation (which varies depending on the time interval units 

recorded -- plotted on the x axis of the graphs) for the data point numbered graph is: 

 y = 0.0123x3 - 2.7184x2 + 106.87x – 172.91, 

  

which is a 3rd order polynomial equation; and R² = 0.9941, where, 

 

y = predicted irradiance (W/m2); 

x = recorded time data number (0, 1, 2, … 50); 

R2 = (correlation factor) measure of how close the trendline matches the actual data.  

The closer the factor is to 1, the closer the trendline approximates the actual measured data. 

 

The trendline equation for the x axis time line  recorded in time of day time is: 

 

y = 10882x3 - 34234x2 + 26934x - 5282.3, 

  

which is a 3rd order polynomial equation; and R² = 0.9941, where, 

 

y = predicted irradiance (W/m2); 

x =time of day when data was recorded (7:00 AM, 7:15 AM, …7:00 PM); 

. 

The above equations determine the same predicted irradiance (y) results, even though each 

equation respective terms vary, depending on the x axis time units chosen. 

 

 

 

DETERMINIG THE AREA UNDER THE CURVES –  

TOTAL ENERGY PER 12 HOUR MEASURMENT PERIOD (INSOLATION) 
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METHOD 1:  SUM OF THE AREA RECTANGULES  (generally least accurate) 

The sum of the area rectangles method approximates the area under the irradiance vs time 

curve using the inner rectangles (each rectangle is inside the curve) bounded by the x (time) 

axis and the curve. 

There are three rectangles that could be summed (outer, inner and  mid-point rectangles) as 

illustrated in Appendix E (detail discussion  in Appendix A). 

Appendix E table illustrates the area under the curve for each rectangle location (inner, outer, 

mid-point).  Each rectangle area is determined by multiplying its base times it height, and then 

summing all the rectangles.  The base is a constant 15 minute interval (or ∆t = 0.25 hours).   

The height is the irradiance measurement take off the curve associated with a given time 

interval and varies with which of the outer, inner or mid-point rectangles are used in the area 

determination.  As shown the rectangle method resulted in an energy under the curve of 

7730.75 W-Hr/m2,, or 7.73 peak sun hours (where 1000 W-Hr/m2 is equivalent to one peak 

sun hour; 7730.75/1000=7.73).  In this example all three rectangle methods give the same 

answer because of the 0 end point irradiance measured starting and ending conditions for all 

three rectangles. 

 

METHOD 2:  SUM OF THE AREA TRAPEZOIDALS  (generally more accurate than 

rectangle method) 

The sum of the trapezoidal method approximates the area under the irradiance vs time curve 

using sum of trapezoids bounded by the x (time) axis and the curve. 

An illustration of the trapezoidal method is shown in  Appendix F (detail discussion  in Appendix 

A). 

Appendix F table illustrates the area under the curve for each trapezoid.  Each trapezoid area 

is determined by multiplying its base (∆t, 0.25 Hrs),  times the sum of (2 times the first side of 

the first trapezoid – being the first irradiance measurement, plus the sum of all the other 

irradiance measurements up to the last measurement, plus 2 times the last side of the last 

trapezoid, being the last irradiance measurement).    As shown the trapezoidal method 

resulted in an energy under the curve of 7730.75 W-Hr/m2, or 7.73 peak sun hours (where 

1000 W-Hr/m2 is equivalent to one peak sun hour; 7730.75/1000=7.73).  This particular 

example total energy coincidentally is the same as the rectangular method. 

 

METHOD 3:  SIMPSON’S RULE SUM OF THE AREA OF PARABOLAS (generally more 

accurate than the Trapezoidal rule) 

In Simpson's Rule, parabolas are used to approximate each part of the curve. This is very 

efficient since it's generally more accurate than the other (rectangle or trapezoidal) numerical 

methods.  Divide the area into n equal segments of width Δx (Δt, 0.25 hours). The approximate 

area is given by the following. 

Simpson's Rule 
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             b 

Area=∫f(x)dx≈(Δt/3) (y0+4y1+2y2+4y3+2y4…+4yn−1+yn) 

             a 

 

where Δt=(b−a)/n = 0.25 hours in the example 

Note: In Simpson's Rule, n must be an EVEN number. 

Appendix G table illustrates the area under the curve for Simpson’s Rule.  As shown 

Simpson’s Rule method resulted in an energy under the curve of 7765.23 W-Hr/m2,, or 7.77 

peak sun hours (where 1000 W-Hr/m2 is equivalent to one peak sun hour; 

7765.23/1000=7.77).   

 

METHOD 4:  INTEGRATION METHOD (generally most accurate) 

In regard to the Integration Method, the trendline curve formula is integrated as follows: 

f(t) = y = at3 + bt2 + ct + d  (the trendline formula, a 3rd order polynomial in this example). 

Integrate as follow:  

F(t) = dy = ∫( at3 + bt2 + ct + dt0)dt = at(3+1)/(3+1) +bt(2+1)/(2+1) +ct(1+1)/(1+1) +dt(0+1) 

 =  a/(4)t4 + b/(3)t3 + c/(2)t2+ (d/1)t1  

 In otherwords, for the polynomial trendline, for each term increase the 

exponential by 1 and divide the exponent result into the component of the equation. 

For the example,  

 y = 0.0123t3 - 2.7184t2 + 106.87t – 172.91(to = 1); 

 F(t) = (0.0123/4)t4 – (2.7184/3)t3 + (106.87/2)t2 – 172.91t1 

             t=50 

 And for ∫  (( 0.0123/4)t4 – (2.7184/3)t3 + (106.87/2)t2 – 172.91t1) 
  t=1 

 

 = (( 0.0123/4)(50)4 – (2.7184/3)(50)3 + (106.87/2)(50)2 – 172.91(50)1) – 

  (( 0.0123/4)(1)4 – (2.7184/3)(1)3 + (106.87/2)(1)2 – 172.91(1)1) 

 

 =  30894 – 120 = 30,774 W-min/m2 

 Dividing by 4 (since the measurements were in 15 minute increments) results in… 

 = 7793 W-Hr/m2 

Comparted to the graphical methods, the integration method is much faster. 
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COMPARING THE METHODS 

A comparison of the four methods shows: 

Method Total Energy, W-Hr/m2 

Rectangle 7731 

Trapezoidal 7731 

Simpson Rule 7765 

Integral Calculus 7793 

 

 

INTEGRATION STEP-BY-STEP METHOD 

Step 1: Record instantaneous irradiance measurements (say from a pyranometer), and 

record the time interval between each measurement.  (Select a convenient time 

interval of measurement, say every 15 minutes, or quarter of an hour).  

Measure from sunrise to sunset.  Take note of units.  In this example irradiance 

is measured in Watt/m2 and time intervals in minutes, so the recorded data 

point is number 1 and ending at data point number 50 over a 12 hour period, 

from 7:00 a.m. (sunrise) to 7:00 p.m. (sunset).  The more data points recorded 

the more accurate the plotted data, equally the more time consuming the data 

collection. 

Step 2: Plot by hand or use graph software (such as Microsoft™ Excel™), irradiance 

on the y axis and the time on the x axis.  Appendix B illustrates a table of 

recorded example irradiance data over time. 

 Appendix C illustrates a plot of the data using Microsoft™ Excel™ (plotting both 

irradiance and time units of 15 minute interval data points and time of day). 

 Graph data input is illustrated below: 
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Step 3. Using Micosoft™ Excel™ graphed data, determine a trendline equation for the 

plotted data.  Appendix E illustrates such trendline equation for the Appendix A 

example data.  A trendline equation should be selected that provides a good 

correlation factor (R2 ≈1.0, the closer to 1, the better the correlation).  Typically 

for a fairley uniform parabolic structured curve, a 3rd order polynomial equation 

will give a nice fit. 

 Click on the plotted data curve and right click to bring up ‘Add Trendline”. 

 

 

Select trendline options, typically polynomial and 3rd order, display equation on 

chart and display R-squared value on chart. 
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Step 4: After accepting a trendline having a R2 value close to one, integrate the 

equation as follows: 

 Unintegrated equation: 

 y = at3 + bt2 + ct + dt0  (note the last component is dt0, usually t0 is not written 

since a number raised to the zero power is equal to one or t0 = 1); where… 

 y = predicted irradiance in Watt/m2 

 t  = unit of time (can be each individual data point number, 1,2,3, etc to n, or 

time of day 7:00 a.m., 7:15 a.m, etc.  The trendline equation terms will be 

different depending on what units of measurement are used to determine the 

equation.   

 a, b, c and d are constant coefficients that the trendline equation has 

determined.  Caution:  the above example indicates the equation has all 

positive (+) values combining the coefficients, however, the trendline may have 

a mixture of positive (+) and negative (-) values… so be careful to maintain the 

same signs.  (For example, a trendline might be:  y = -at3 – bt2 + ct – dt0) 

Integrate the above equation, by increasing the exponent of each t value by 1 

and divide each component by that factor:  For example… 

[a/(3+1)]t(3+1) + [b/(2+1)]t(2+1) + [c/(1+1)]t(1+1) + [d/(0+1)]t(0+1) 

(a/4)t4 + (b/3)t3 + (c/2)t2 + (d/1)t 

Substitute into the integrated equation the last data point (keeping units 

consistent) and in this case data point 50, and determine the integral. 

Do the same with the first data point, 1. 
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Subtract from the (50) data point result, the (1) data point result, and the 

resultant number is the area under the curve (Watts-quarter hour)/m2, because 

in this example, data was taken every 15 minutes, or quarter of an hour.  The 

result is divided by 4, to convert to Watt-Hour/m2. 
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APPENDIX A 

DERIVATION OF AREA UNDER A CURVE  

GRAPHICAL METHODS (RECTANGLE, TRAPEZOID, SIMPSON’S RULE) 

AND 

INTEGRATION (CALCULUS) 

The Area under a Curve 

Assume a museum is to be built with three archways.  These archways are to be 

covered in tiles.  What is the area under each archway (‘area under the curve’) 

which will determine how many tiles are required? (The arch problem). 

 

There are at least four ways to determine the area: 

1. Using three different graphical  approximation techniques: 

1.1.  Finding areas of rectangles,  

1.2.  trapezoids or  

1.3.  parabolic boundaried areas – (‘Simpson’s Rule’), or 

2. Using (Calculus) integration 

Prior to the development of calculus integration, the engineer could 

only approximate the area under the curve, by dividing the area into many 

rectangles (the more rectangles, the more accurate the estimate) and adding the 

areas of all the rectangles (a tedious manual graphical determination): 
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To determine the area of a rectangle, multiply its width (∆d, delta d) times its 

height (a, which is determined from either direct measurement or from the 

equation, f(d), which is short hand notation for the function of the curve), as 

shown in the illustration.  

The above illustration is based on using ‘inner rectangles’, being rectangles 

located within the archway curve.  Area of rectangle = height x base;  f(d) * ∆d 

or for the example rectangle, Area = a * ∆d. 

There are two other rectangle methods to determine area, ‘outer rectangles’ and 

‘mid-point rectangles’, as illustrated below. 

Graphical Method Approximation Based On Rectangles 

1.  Using ‘outer rectangle’ graphical method, determine the area under the 

curve a =  1 − d2 between d = 0 and d = 1, for # = 5 (number of rectangles), 

based on sum of areas of rectangles method.  

The approximate graphical area of interest is illustrated below: 
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Because # = 5 (the number of rectangles to be considered), the width of each 

‘outer rectangle’  is: 

d =Δd = 0.1     [(1-0.5)/5] 

The  sum of the areas of each 5 ‘outer rectangles’ are illustrated as follows: 

 

 

The height (a)  of each outer rectangle is determined by the curve equation or 

function (f(d)) value for the selected d value. 
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For d = 0.5, since  a = f(d) = 1−d2, outer rectangle number 1 has height (a) 

determined by: 

f(0.5) = 1 − (0.5)2 = 0.75 

Its area is: 

Area(outer rectangle no. 1)  =  0.75(a) * 0.1(∆d) = 0.075 square unit area 

For outer rectangle number 2, its height (a2) is: 

f(0.6)2 = 1 − (0.6)2 = 0.64 

and so on, and for the fifth outer rectangle, 

f(0.9)5 = 1 − (0.9)2 = 0.19 

Summing up the five outer rectangle areas results in:  

             #=5 

A= ∑ A(#) = (0.75)(0.1)+0.64(0.01)+0.519(0.1) +0.36(0.1)+0.19(0.1) 
       #=1 

=  0.245 square units 

A more accurate approximation of the rectangle areas, would be based on 

determining the area of inner rectangles, and then average the outer rectangle 

and inner rectangle results (divide the sum of the two area by 2). Illustration of 

the inner rectangles is shown below: 
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In regard to  areas for inner rectangles (the 5th one has height 0, so the 5th 

rectangle area = 0): 

 

             #=5 

A= ∑ A(#) = (0.64)(0.1)+0.51(0.01)+0.36(0.1) +0.19(0.1)+0(0.1) 
       #=1 

=  0.17 square units 

 

 

The average of the outer and inner rectangle areas is given by: ( 0.245+0.17)/2 = 

0.2075. 

Another method is to consider the mid-point rectangles on the function curve as 

illustrated below. 
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The area of the mid-point rectangles is determined as: 

             #=5 

A= ∑ A(#) = (0.68)(0.1)+0.58(0.01)+0.44(0.1) +0.27(0.1)+0.97(0.1) 
       #=1 

=  0.209 square units 

The Trapezoidal and Parabolic (Simpson’s Rule) Methods 

Two useful  numerical methods to the area under the curve are based on 

Trapazoidal and Parabolic calculations. (Not unusual, computer software and 

graphic calculators tend to rely on these methods). 

• Trapezoidal method 

• Paraboli (Simpson's) method 

The Trapezoidal Method 

In place of rectangles, trapezoids (trapeziums) may be used that will give more 

accurate area under the curve estimate. 

 

And as before, "Δd" represents a small incremental change in d. 

Recall a trapezoid is a 4-sided flat shape with straight sides that has a pair of 

opposite sides parallel. (Called a trapezium in the UK. Both US and UK 
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definitions of trapezium and trapezoid are swapped over.) The sides that are 

parallel are called "bases". 

 

The area of a trapezoid (trapezium) is given by: 

 

Area = 2h(b1+b2) 

Thus the estimated area under the curve of a trapezoid is found by adding the area 

of the trapezoids, similarly as for rectangles. (Trapezoids are generally vertical 

on graphs, or rotated 90°, thus their height, h, in this example is h = Δd. 

Total Area of all Trapezoid ≈ 2(a0+a1)Δd+2(a1+a2)Δd+2(a2+a3)Δd+…, and so on. 

Simplified… the Trapezoidal Method, for n trapezoids: 

Area ≈ Δd(2a0+a1+a2+a3+…+2an) 

Δd for each of the trapezoid areas from d = d1 to d = d2, is: 

Δd=(d2−d1)/n 

To determine the bases of each trapezoid (b1 , b2….bn), use the curve function or 

equation… 

a0=f(0) 

a1=f(d+Δd) 

a2=f(d+2Δd) 
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an=f(d) 

 

• As with rectangles, the more trapezoids used (but up to a practical limit), 

the more accurate the area estimate 

• Consequently with more trapezoids, Δd approaches a limit of  zero (0), 

expressed as, Δd→0, or the Limit ΔdΔd→0 = 0 . 

• The area of all trapezoid if the function or curve bounding the area of 

interest, is above the x (or d in this example) -axis only between x = 

d0 and  x = dn 

           b 

Area Under the Curve = ∫f(d)d(d) ≈ Δd(2a0+a1+…+2an) 
                  a 

 

Assuming  n=5, approximate the area under the curve (integral) using the 

trapezoid method: 

1 

∫√(d2+1) d(d) 
0 

 

For this example; a0 = 0 and an=5 = 1, and the height or width of each trapezoid: 

∆d = d(d) = (a5 −a0)/n = 0.2 

a0=f(d)= f(0)=√(02+1)=1 

a1 = f(d+Δd) = √(0.22+1)  =1.0198 
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a2=f(d+2Δd)=  f(0.4) = √(0.42+1) = 1.0770 

a3=f(d+3Δd)= f(0.6)=1.1661 

a4 = 1.2806 

a5= 1.4142 

Estimated area under the trapezoidal method curve (integral) ≈ 

0.2(2×1+1.0198 +1.0770+1.1661 +1.2806+2×1.4142) 

= 1.15 

                                                                   1 

Or, expressing as an integral function:     ∫√(d2+1) d(d) ≈ 1.15 
                                                                  0 

As noted in the above graph, the trapezoids follow closely the actual curve, thus 

the area estimate is closer to the actual area value when compared to the rectangle 

method (and the actual integral value is 1.148). 

Parabolic Method or Simpson's Rule 

As noted, the Trapezoid Method estimated area determinations that are closer to 

the actual area under the curve, in contrast to the rectangular method, primarily 

because less area outside the area under the curve, is used in the method. 

Even so, there is a closer estimate method for determining area under a curve. 

Using the Parabolic Method, or more conventionally called ‘Simpson's 

Rule’, parabolas are used (in place of rectangles or trapezoids) to estimate the 

area under the curve. Simpson’s rule, as shown below, is more accurate than the 

other (rectangle or trapezoidal) numerical methodologies, because ‘less’ 

extraneous area outside the actual area under the curve, is used in the method.  
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R area under the curve is divided into  n equal segments of width Δd. The 

estimated area is given by: 

Simpson's Rule 

            dn 

Area = ∫f(d)d(d) ≈ (Δd/3) (a0+4a1+2a2+4a3+2a4…+4an−1+an) 
                    d0 

where Δd = (dn−d0)/n 

In Simpson's Rule, n must be an even number. 

Example of Simpson's Rule 

                       3 

Estimate        ∫1/(d+1))d(d) using Simpson's Rule, assume  n = 4. 
                     2 
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Δd = (d4−d0)/n = (3-2)/4 = 0.25 

a0 = f(d) = f(2) = 1/(2+1)  =  0.3333 

a 1= f(d+Δd)= f(2.25) = 1/(2.25+1) = 0.3076 

a2 = f(d+2Δd)d= f(2.5) = 1/(2.5+1) = 0.2857 

a3 = 0.2666 

a4 = 0.25 

So 

                                                                                                                        dn 

Area Under the Parabolic Bounded Curves = ∫f(d)d(d) 
                                                                        d0 

(0.25/3) * [0.3333+4(0.3076)+2(0.2857)+4(0.2666)+0.25] 

= 0.2876 

The definite answer is 0.28766%. 

In this illustration, the actual curve is parabolic, so the overlapping area under the 

curve parabolas essentially merge with the parabolic curve a=1/(d+1) 

 

Discussion of the Parabolic Method or Simpson’s Rule 

Consider finding the area under the curve… 



 

Larry D. Killion – Solar Insolation – March 2017 Page 22 of 36 
 

 

Divide the area under the curve into 4 equal sub-areas. (an even number) 

 

Next construct parabolas which closely approximates the actual curve in each of 

the 4 sub-areas. Any three points, a specific parabola can mimic the actual sub-

area boundary that overlaps the actual curve. 

Let's start with the first 2 segments on the left. We take the end points, and the 

middle point as shown: 
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Measure each point using a overlaid grid, and determine these three points to be: 

(d0,a0) = (0,0) 

(d1,a1) = (0.25,0.4219) 

(d2,a2) = (0.5,0.625) 

With these three data points, consider the general form of a parabola, a =ad2+ bd 

+ c, and substitute the known d and  a values… 

0 = a(0)2+b(0)+c 

0.4219 = a(0.25)2+b(0.25) + c 

0.625 = a(0.5)2+b(0.5) + c 

Thus three simultaneous equations in three unknowns.  Solve with algebra… 

a = -1.7504, b  2.1252, c=0. 

The parabola passing through the three points is… 

a = -1.7504d2 + 2.1252d + 0 

This parabolic equation in graphical form is… 
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As noted the estimated parabola passes through the three points, and it is close to 

our original curve, and thee more sub-areas chose, the more accurate. 

A similar process is followed for the second half of the original curve. 

Integral Calculus 

 

Often the relationship involving the rate of change of two variables is known 

(such as speed or velocity, meters per second, the change in distance with respect 

to time), but a need to know the direct relationship between the two variables. 

For instance, the velocity of an object may be known at a particular time, but it is 

also needed the position of the object at a particular time. 

To determine this direct relationship, the process 

called integration (or antidifferentiation)...the Calculus… is considered. 

Uses of integration include finding centers of mass, displacement and velocity, 

fluid flow, modelling the behaviour of objects under stress, etc. 

Before integration, the primary way to find the area under a curve was to draw 

rectangles with increasingly smaller widths. 

Antiderivatives and The Indefinite Integral 

"Antidifferentiation", also called "integration" is the opposite process to 

differentiation 

Example 1 

If the derivative is… 
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dd/dt = 3xt2  (the rate of change of d with respect to t is determined as 3t2), 

the origin of the function this derivative came from, then reverse or undo the 

differentiation process.  

d=t3 is one  answer, since the derivative of d = t3 = dd/dt = 3t2. 

There are  many other antiderivatives that equally work… 

d=t3+4 

d=t3+π 

d=t3+27.3  , since the derivative (or rate of change) of a constant value is zero (no 

rate of change of a constant). 

In general, d=t3+C is the indefinite integral of 3t2. The number C is the constant 

of integration (since the differential of a constant is zero). 

The calculus integral expression is :  ∫3t2dt=t3+C… 

"The integral of 3t2 with respect to t equals t3 + C." 

The  ∫ sign is an elongated "S", standing for "sum". (In old German, and English, 

"s" was often written using this elongated shape.)  

∑ is the symbol for "sum".  

In calculus, ∫ is the symbol for the sum of an infinite number of infinitely small 

areas (or other variables). 

Note: Sometimes a capital letter is used to signify integration. For example,  F(t) 

to mean the integral of f(t) or ∫(f(t). 
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Integration was developed  as a more efficient process than "adding areas of 

rectangles or trapezoids or parabolas". 

 

By an incremental ‘infinite sum’ delta or, Δ-process, the exact area under a 

curve a = f(d) from d=a1 (0.25 in the example) to  d=a2 (0.75 in the example) is 

given by the definite integral: 

 

                                                          d2 

Area under the curve = ∫(f(d)d(d) 
                                                          d1 

If F(d) is the integral ( ∫ ),  of f(d), then 

 

                                                          d2                                   d2 

Area under the curve = ∫(f(d)d(d)= [F(d)] = F( d2) – F( d1) 
                                                          d1                                   d1 

To evaluate a definite integral for the area under a curve, proceed as follows: 

• integrate the given function (be sure make an contant, C, zero) 

o Example integration for 3rd degree polynomial 

o dy/dt = at3+bt2+ct+d; where a,b,c,d are constants 

o f(t) = dy/dt = atn + btn-1 + ctn-2 +… + d 

o F(t) = ∫dy/dt = ∫[ atn + btn-1 + ctn-2 +… + d] 
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o Integrating, y = a(1/(n+1))tn+1 + b(1/(n-1+1))tn-1+1 + c(1/(n-2+1))tn-

2+1 +… + dt0+1(1/(0+1)) 

o For n = 3; y = a(1/(3+1))t3+1 + b(1/(3-1+1))t3-1+1 + c(1/(3-2+1))t3-2+1 

+ dt0+1(1/(0+1)) = a(1/(4))t4 + b(1/(3))t3 + c(1/(2))t2 + dt(1/(1)) 

o Check by reverse differentiation of the integral value:  at3 + bt2 + ct 

+ d (check) 

• substitute the upper limit (tn) into the integral 

• substitute the lower limit (t1) into the integral 

• subtract the second value from the first value 

• the answer will be a number representing the area under the curve. 

This is part of The Fundamental Theorem of Calculus. 

 

Another practice…      

 
                5        

Evaluate:  ∫3t2dt  =  [3/3t3]1
5 (Integrating…) 

                            1 

=[t3]1
5 

=53−13 (Substitute upper and lower values and subtract) 

=125−1 = 124 

The Definite Integral 

As discussed previously 

                                                          d2                                   d2 

Area under the curve = ∫(f(d)d(d)= [F(d)] = F( d2) – F( d1) 
                                                          d1                                   d1 

to find the area under a curve. 

F(d) is the integral of f(d); 

F(d2) is the value of the integral at the upper limit d=db2; and 

F(d1) is the value of the integral at the lower limit, d=d1. 

This expression is called a definite integral.  
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Practice… 

                5 

Evaluate ∫(3t2+4t+1)dt  
               1 

1) Find the integral;write the upper and lower limits with square brackets: 

[(3/3)t3+(4/2)t2+t]1
5;   [t3+2t2+t]1

5 

2) Substitute 5 (the upper limit) into the integral: 

[(5)3+2(5)2+5]=125+50+5=180 

3) Then substitute 1 into the integral: 

[(1)3+2(1)2+1]=1+2+1=4 

4) Subtract the result of (3) from the result of (2): 

180−4=176 

The integral expression is written as… 

 
5 

∫(3t2+4t+1)dt=[t3+2t2+t]1
5 

1 

[(5)3+2(5)2+5]−[(1)3+2(1)2+1] 

=180−4 

=176 

The answer is a number and does not involve "+ C", the constant of integration 

since the result is the definite integral. 
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APPENDIX B 

MEASURED IRRADIANCE DATA 

 

Data 

Point Time

Tiime 

Measurement 

Increment 

(minutes)

Measured Irradiance 

(watts/m
2
)

1.00 Sunrise 7:00 0:00 0

2.00 7:15 0:15 25

3.00 7:30 0:15 125

4.00 7:45 0:15 200

5.00 8:00 0:15 290

6.00 8:15 0:15 340

7.00 8:30 0:15 410

8.00 8:45 0:15 500

9.00 9:00 0:15 580

10.00 9:15 0:15 635

11.00 9:30 0:15 650

12.00 9:45 0:15 710

13.00 10:00 0:15 795

14.00 10:15 0:15 850

15.00 10:30 0:15 875

16.00 10:45 0:15 901

17.00 11:00 0:15 925

18.00 11:15 0:15 950

19.00 11:30 0:15 965

20.00 11:45 0:15 999

21.00 12:00 0:15 1000

22.00 12:15 0:15 1010

23.00 12:30 0:15 1019

24.00 12:45 0:15 1000

25.00 13:00 0:15 995

26.00 13:15 0:15 985

27.00 13:30 0:15 960

28.00 13:45 0:15 930

29.00 14:00 0:15 915

30.00 14:15 0:15 900

31.00 14:30 0:15 890

32.00 14:45 0:15 850

33.00 15:00 0:15 845

34.00 15:15 0:15 810

35.00 15:30 0:15 790

36.00 15:45 0:15 735

37.00 16:00 0:15 700

38.00 16:15 0:15 685

39.00 16:30 0:15 600

40.00 16:45 0:15 545

41.00 17:00 0:15 475

42.00 17:15 0:15 430

43.00 17:30 0:15 355

44.00 17:45 0:15 290

45.00 18:00 0:15 220

46.00 18:15 0:15 165

47.00 18:30 0:15 69

48.00 18:45 0:15 20

49.00 19:00 0:15 10

50.00 Sunset 19:15 0:15 0
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APPENDIX C 

GRAPHS, MEASURED IRRADIANCE VS TIME 

 

 

APPENDIX D 
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GRAPHS, MEASURED IRRADIANCE VS TIME WITH TRENDLINE EQUATIONS 
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APPENDIX E 

SUM OF THE AREA RECTANGULES METHOD 
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APPENDIX E, CONT’D 

 

  

Time Interval Hours (x) Outer (O) Inner (I)

Mid-Point 

(MP)

Outer       

(x * O)

Inner       

(x * I)

Mid-Point 

(x * MP)

1.00 0.25 25 0 13 6.3 0.0 3.1

2.00 0.25 125 25 75 31.3 6.3 18.8

3.00 0.25 200 125 163 50.0 31.3 40.6

4.00 0.25 290 200 245 72.5 50.0 61.3

5.00 0.25 340 290 315 85.0 72.5 78.8

6.00 0.25 410 340 375 102.5 85.0 93.8

7.00 0.25 500 410 455 125.0 102.5 113.8

8.00 0.25 580 500 540 145.0 125.0 135.0

9.00 0.25 635 580 608 158.8 145.0 151.9

10.00 0.25 650 635 643 162.5 158.8 160.6

11.00 0.25 710 650 680 177.5 162.5 170.0

12.00 0.25 795 710 753 198.8 177.5 188.1

13.00 0.25 850 795 823 212.5 198.8 205.6

14.00 0.25 875 850 863 218.8 212.5 215.6

15.00 0.25 901 875 888 225.3 218.8 222.0

16.00 0.25 925 901 913 231.3 225.3 228.3

17.00 0.25 950 925 938 237.5 231.3 234.4

18.00 0.25 965 950 958 241.3 237.5 239.4

19.00 0.25 999 965 982 249.8 241.3 245.5

20.00 0.25 1000 999 1000 250.0 249.8 249.9

21.00 0.25 1010 1000 1005 252.5 250.0 251.3

22.00 0.25 1019 1010 1015 254.8 252.5 253.6

23.00 0.25 1000 1019 1010 250.0 254.8 252.4

24.00 0.25 995 1000 998 248.8 250.0 249.4

25.00 0.25 985 995 990 246.3 248.8 247.5

26.00 0.25 960 985 973 240.0 246.3 243.1

27.00 0.25 930 960 945 232.5 240.0 236.3

28.00 0.25 915 930 923 228.8 232.5 230.6

29.00 0.25 900 915 908 225.0 228.8 226.9

30.00 0.25 890 900 895 222.5 225.0 223.8

31.00 0.25 850 890 870 212.5 222.5 217.5

32.00 0.25 845 850 848 211.3 212.5 211.9

33.00 0.25 810 845 828 202.5 211.3 206.9

34.00 0.25 790 810 800 197.5 202.5 200.0

35.00 0.25 735 790 763 183.8 197.5 190.6

36.00 0.25 700 735 718 175.0 183.8 179.4

37.00 0.25 685 700 693 171.3 175.0 173.1

38.00 0.25 600 685 643 150.0 171.3 160.6

39.00 0.25 545 600 573 136.3 150.0 143.1

40.00 0.25 475 545 510 118.8 136.3 127.5

41.00 0.25 430 475 453 107.5 118.8 113.1

42.00 0.25 355 430 393 88.8 107.5 98.1

43.00 0.25 290 355 323 72.5 88.8 80.6

44.00 0.25 220 290 255 55.0 72.5 63.8

45.00 0.25 165 220 193 41.3 55.0 48.1

46.00 0.25 69 165 117 17.3 41.3 29.3

47.00 0.25 20 69 45 5.0 17.3 11.1

48.00 0.25 10 20 15 2.5 5.0 3.8

49.00 0.25 0 10 5 0.0 2.5 1.3

50.00 0.25 0 0 0 0.0 0.0 0.0

TOTAL 7730.75 7730.75 7730.75

(y) = Irradiance, W/m2

Area (Irradiance x Hours)          

(W-Hr)/m2
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APPENDIX F 

SUM OF THE AREA  TRAPEZODIAL METHOD 
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APPENDIX F 

SUM OF THE AREA  TRAPEZODIAL METHOD, cont’d 

 

 

Time Interval Hours (x)

(yn) = 

Irradiance

, W/m2

1.00 0.25 0

2.00 0.25 25

3.00 0.25 125

4.00 0.25 200

5.00 0.25 290

6.00 0.25 340

7.00 0.25 410

8.00 0.25 500

9.00 0.25 580

10.00 0.25 635

11.00 0.25 650

12.00 0.25 710

13.00 0.25 795

14.00 0.25 850

15.00 0.25 875

16.00 0.25 901

17.00 0.25 925

18.00 0.25 950

19.00 0.25 965

20.00 0.25 999

21.00 0.25 1000

22.00 0.25 1010

23.00 0.25 1019

24.00 0.25 1000

25.00 0.25 995

26.00 0.25 985

27.00 0.25 960

28.00 0.25 930

29.00 0.25 915

30.00 0.25 900

31.00 0.25 890

32.00 0.25 850

33.00 0.25 845

34.00 0.25 810

35.00 0.25 790

36.00 0.25 735

37.00 0.25 700

38.00 0.25 685

39.00 0.25 600

40.00 0.25 545

41.00 0.25 475

42.00 0.25 430

43.00 0.25 355

44.00 0.25 290

45.00 0.25 220

46.00 0.25 165

47.00 0.25 69

48.00 0.25 20

49.00 0.25 10

50.00 0.25 0

Sum

 x 0.25

y46

y47 = 20

y48

2*y49 =2*0=0

y41

y42

y43

y44

y45

y36

y37

y38

y39

y40

y31

y32

y33

y34

y35

y26

y27

y28

y29

y30

y21

y22

y23

y24

y25

y16

y17

y18

y19

y20

y11

y12

y13

y14

y15

y6

y7

y8

y9

y10

y1 = 25

y2

y3

y4

y5

25

125

200

290

340

Area (Irradiance x 

Hours)                     

(W-Hr)/m2
0  2*yo = 2*(0) = 0

410

500

580

635

650

710

795

850

875

901

925

950

965

999

1000

1010

1019

1000

995

985

960

930

915

900

890

850

845

810

790

735

700

685

600

545

475

430

355

290

220

165

7730.75

69

20

10

0

30923
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APPENDIX G 

SIMPSON’S RULE 

 

 

Time Interval Hours (x)

(yn) = 

Irradiance

, parabolic 

prediction

*

Simpson 

Calculaitio

n  =

1.00 0.25 -69  yo -69

2.00 0.25 30 y1 *4 120

3.00 0.25 124 y2*2 247

4.00 0.25 212 y3*4 847

5.00 0.25 295 y4*2 590

6.00 0.25 373 y5*4 1492

7.00 0.25 446 y6*2 892

8.00 0.25 514 y7*4 2057

9.00 0.25 578 y8*2 1155

10.00 0.25 636 y9*4 2545

11.00 0.25 690 y10*2 1380

12.00 0.25 739 y11*4 2957

13.00 0.25 784 y12*2 1568

14.00 0.25 824 y13*4 3297

15.00 0.25 860 y14*2 1720

16.00 0.25 891 y15*4 3566

17.00 0.25 919 y16*2 1837

18.00 0.25 942 y17*4 3767

19.00 0.25 961 y18*2 1921

20.00 0.25 976 y19*4 3902

21.00 0.25 986 y20*2 1973

22.00 0.25 993 y21*4 3974

23.00 0.25 997 y22*2 1993

24.00 0.25 996 y23*4 3985

25.00 0.25 992 y24*2 1984

26.00 0.25 984 y25*4 3937

27.00 0.25 973 y26*2 1946

28.00 0.25 958 y27*4 3833

29.00 0.25 940 y28*2 1880

30.00 0.25 919 y29*4 3675

31.00 0.25 894 y30*2 1788

32.00 0.25 866 y31*4 3465

33.00 0.25 835 y32*2 1671

34.00 0.25 802 y33*4 3207

35.00 0.25 765 y34*2 1530

36.00 0.25 725 y35*4 2901

37.00 0.25 683 y36*2 1366

38.00 0.25 638 y37*4 2551

39.00 0.25 590 y38*2 1180

40.00 0.25 540 y39*4 2159

41.00 0.25 487 y40*2 974

42.00 0.25 432 y41*4 1727

43.00 0.25 374 y42*2 748

44.00 0.25 314 y43*4 1257

45.00 0.25 252 y44*2 505

46.00 0.25 188 y45*4 753

47.00 0.25 122 y46*2 244

48.00 0.25 54 y47 *4 216

49.00 0.25 -16 y48 -32

50.00 0.25 -88 0

Sum 93183

 x(.25/3) 7765.237 W-Hr/m2

*y = 0.0123x3 - 2.7184x2 + 106.87x - 172.91


